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Figure 1: Examples of the visual explanations in our experiment—We tested two ways to represent an example instance: (a) an image
or (b) a rose chart of features, and three spatial layouts to arrange the instances: (c) grid, (d) tree, and (e) graph. Three images (c-e) here show
explanations of the same instances, classifier, and classification recommendation.

ABSTRACT
We investigated the effects of example-based explanations for a
machine learning classifier on end users’ appropriate t rust. We
explored the effects of spatial layout and visual representation in
an in-person user study with 33 participants. We measured partici-
pants’ appropriate trust in the classifier, quantified the effects of
different spatial layouts and visual representations, and observed
changes in users’ trust over time. The results show that each expla-
nation improved users’ trust in the classifier, and the combination
of explanation, human, and classification algorithm yielded much
better decisions than the human and classification algorithm sepa-
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rately. Yet these visual explanations lead to different levels of trust
andmay cause inappropriate trust if an explanation is difficult to un-
derstand. Visual representation and performance feedback strongly
affect users’ trust, and spatial layout shows a moderate effect. Our
results do not support that individual differences (e.g., propensity
to trust) affect users’ trust in the classifier. This work advances
the state-of-the-art in trust-able machine learning and informs the
design and appropriate use of automated systems.

CCS CONCEPTS
•Human-centered computing→Empirical studies inHCI;

Information visualization; Empirical studies in visualization; 
Visualization design and evaluation methods; • Computing method-
ologies → Supervised learning by classification.
KEYWORDS

Human-machine Collaboration, Trust, Trust Calibration, Infor-
mation Visualization, Explainable Artificial Intelligence, Supervised-
learning, Classification
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1 INTRODUCTION
We are now experiencing more and more machine learning tech-
niques incorporated within automated systems, both in our per-
sonal lives and in work environments. While these systems are 
powerful, they do make mistakes occasionally, leading to misuse 
(“the over reliance on automation”[97]). Sometimes these systems 
are underestimated by people, leading to disuse (“the neglect or 
under-utilization of automation”[97]). Both disuse and misuse could 
cause serious problems[74, 79]. To use automation properly, users 
must trust an automated system appropriately [3].

A current and widely held belief is that explaining to users how 
a system operates will improve their trust in the system [25, 34, 
99, 118] and decrease aversion after seeing an error[18]. Both ver-
bal [21, 52, 117] and visual [14, 101] explanations were shown to 
provide transparency[14, 52] and increase users’ trust[117]. How-
ever, much of the existing research focused on explaining the un-
derlying algorithm[69]; and designers may assume that users have 
advanced knowledge of machine learning [69], or users have to 
understand the decision process (e.g., [59, 67]). Besides machine 
learning experts, many other end users can also benefit from ma-
chine learning[41, 129], and sometimes human-machine collabora-
tions exhibit better performance than the human or the machine 
alone[4, 30, 115]. Yet, end users could be domain experts who may 
not have the background to understand how the algorithm operates. 
This mismatch between designers’ assumptions and users’ back-
ground may have led to recent controversial and counter-intuitive 
findings (e.g.,“explanations can be harmful”[57, 111]).

In this paper, we aim to foster end users’ appropriate trust in 
machine learning techniques, facilitate decision-making processes, 
and improve the outcomes of human-machine collaboration. To 
do so, we investigated the relationship between users’ trust and 
visual explanations, namely example-based explanations (e.g., [8, 
53, 55, 122]), which we argue are more suitable as explanations 
for end users. We hypothesized that the design of example-based 
explanations affect users’ appropriate trust in machine learning 
and therefore studied two important visualization design factors: 
spatial layout and visual representation[123].

The remainder of this paper is organized as follows. We first out-
line the background for this research (Section 2). We then present 
our motivation and justification for the study (Section 3) followed 
by the detailed design and procedure (Section 4). We report how 
the visual explanations assist users in developing trust in a clas-
sifier (Section 5). We a lso present our insights f rom the experi-
ment (Section 6). Specially, our research contributes the following:
1 Quantitative evidence that visual explanations help users de-

velop appropriate trust in a machine learning classifier and use
the recommendations more appropriately;

2 Quantitative results of the effects of the two design factors
(spatial layout and visual representation) on end users’ trust;

3 Designs of six visual explanations (three spatial layouts and two
visual representations) for a classification recommendation.

2 BACKGROUND
This section introduces and defines two important concepts in this
paper: appropriate trust and example-based explanations for
machine learning.
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2.1 Appropriate Trust
Trust is an important factor in users’ decisions to use an automated
system. Operators did not use automation when their trust in the
system was less than their own self-confidence [61]; they used
automated systems they trusted and did not use those they did
not trust [94]. Trust in a system is both similar to and different
from trust in relationships between humans[62, 70]. While many
definitions and models of trust were proposed[81, 119] in different
contexts (e.g., human-human[70, 77], human-automation[37, 62,
93], and e-commerce [32, 64]), we use the definition for human-
computer trust from Madsen and Gregor[72] which was adapted
from McAllister[78]:

“Human-computer trust is defined in this study to be, the extent
to which a user is confident in, and willing to act on the basis of,
the recommendations, actions, and decisions of an artificially
intelligent decision aid. ”

Henceforth trust has two aspects: users’ willingness to follow a
recommendation of a system and their confidence in this decision.

As such, appropriate trust (or calibrated trust[87, 92], see Figure 2)
is the alignment between the perceived and actual performance of
the system[79, 80]. It is related to users’ ability to rely on the system
when it is correct and to recognize when the system is incorrect.
Appropriate trust is different from overtrust (related to misuse)
and undertrust (related to disuse) [15, 97]. We target appropriate
trust and argue that trust in a system must be appropriate, while
an increment of inappropriate trust, i.e., overtrust and undertrust,
should be avoided. We would like to contrast our contributions
with the research that merely “increases users’ trust.”

2.2 Example-based Explanations
Several research communities (e.g., human-computer interaction,
visualization, artificial intelligence/machine learning) are arguing
for more human interpretability of machine learning[19, 35, 42, 128]
and beyond[3] and explored various ways of explaining machine
learning classification. Examples include using the internal feature
coefficients for a linear support-vector classifier[28], showing the
distribution of selected features across the random trees for the im-
portance of features in an extra-trees classifier[33], and explaining
the inner working of an artificial neural network for overall variable
contributions[95]. Other techniques delved into the black-box to
explain the classifier [106], assisted machine learning experts to
understand the classifier’s internal representation[26, 73, 124], and
deep neural networks’ architecture[50, 121].

The techniques mentioned above mostly followed a “model-
centric” approach [10, 43, 91]. Emerging approaches explain an
intelligent system’s behavior to non-technical users for debug-
ging the system [59], improving the underlying models [2, 110],
or increasing users’ trust [67]. These studies used verbal expla-
nations (e.g., [21, 52, 117]) or showed a few examples/features
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(e.g., [11, 66]) for end users[67] (e.g.,participants from Amazon’s
Mechanical Turk[66]). They held an underlying assumption where
users must understand how a system operates to “increase” their
trust[66, 67, 111]. Users’ understanding of a system can correlate
with their trust [63, 68], but their understanding does not neces-
sarily equate to trust[7] or accurately predict their trust[52]. The
conflict between the limited expertise of end users and the com-
plexity of a machine learning algorithm results in the explanations
limited by a small set of features or simple models[59].

Example-based explanations resolve this conflict. They show
promising results on improving end users’ understanding and per-
ception of an intricate system[8]. They were commonly used to
illustrate a machine learning process by presenting examples in-
stances from the training set (e.g., [8, 11, 53, 58, 101, 112]). For
example, a few techniques learned an influence function and used
the most influential training instances[53, 122]; visual inspection
was used to reveal important features and explain a prediction for
both binary[112] and real-valued data[58]; a locally learned model
was used to show an instance-level prediction of any classifier for
both image- and feature-based data [101]. These techniques gen-
erally require less expertise on how the underlying algorithm or
the system operates but reveal some level of information about the
internal structure and performance. Empirically, example-based
explanations helped users with diverse backgrounds better under-
stand and access an intelligent system[8, 11, 18]. Such explanations
also align with people’s inductive (“bottom-up logic”) and analogi-
cal reasoning (“one instance to another”) to understand why certain
objects are considered similar or different[116]. They are suitable
testbeds for studying the effects of visualization designs on end
users’ trust in machine learning.

3 STUDY RATIONALE
Though a new field, the literature on explainable artificial intelli-
gence (XAI)[39] and interpretable machine learning is already rich
(e.g.,[1, 90, 91, 116]). To contrast with this, our study aims to shed
light on three under-explored areas in the context of using machine
learning for decision making:
1 The relationship between users’ trust in a system and visual

explanations for human-machine collaboration;
2 The effects of different visualization designs on users’ trust in

machine learning;
3 An understanding of users’ appropriate trust for proper usage

of an automated system.
In our study, we used example-based explanations constructed from
the instances in a classifier’s training set, and we manipulated two
key design choices for visual explanations. This section presents
our motivation, justifies our design decisions, and explains how we
generated different visual explanations for our experiment.

3.1 Motivation
Designing effective visual explanations for showing example in-
stances can be quite challenging. Kulesza et al. outlined a set of
principles for designing explanations for interactive machine learn-
ing, i.e., “Be Complete” and “Don’t Overwhelm”[59]. These prin-
ciples imply a tradeoff between the amount of information in an
explanation and the level of trust users develop (e.g.,“not too little

and not too much”[52]). Other research showed that explanations
sometimes hurt users’ performance[57], and multiple explanations
may need to be considered[110]. While these studies explored dif-
ferent design factors for explanations per se, few investigated visual
properties of explanations, which are crucial in understanding and
interpreting information from a visualization[9].

We hypothesized that different visual properties of explanations
can affect users’ trust in the classifier, and we selected two factors
that cover much of a visualization’s design space: spatial layout
and visual representation. They are also primary factors when
designing a visualization[9, 123] that illustrates the relationship
between example instances (called “graph visualization”).

3.2 “Escape Routes” : Finding Examples
We created an algorithm called “Escape Routes” to identify rele-
vant training instances for a machine learning classification given
an input instance. Several algorithms can select relevant training
instances for a particular classification [8, 53, 101, 122] and our
algorithm is similar to a few past techniques looking for nearest
neighbors at the decision boundaries (e.g.,[36, 113]). However, our
custom algorithm was better suited to our user study, i.e., by help-
ing reveal the importance of spatial layout in an example-based
explanation. Similar to past work, we assume a classifier’s “internal
representation” of the training set and input instances are available.

Our algorithm first constructs a 𝑘−nearest neighbors graph from
the internal representation matrix of the training set combined with
the input instance based on the Minkowski distance metric[107].
Here a typical parameter setting is 𝑘 = 8, but these parameters
should be tuned to the data. Our algorithm weights edges by the
distance between endpoints and ignores the direction of the edges.
It then finds a shortest path tree rooted at the input node, prunes the
tree by deleting all nodes whose parents have a different class than
the input node, and further simplifies the tree by deleting every
node with no descendants (including itself) that have a different
class from the input node. Thus, only leaves in the pruned shortest
path tree may have a different class from the input node.

After pruning, the remaining nodes in the tree are more rel-
evant for the classification of the input node, and the weighted
connections provide additional information about the relationship
between the input and training instances. Descendants of the input
node are normative examples, whereas leaf nodes are comparative
examples[8]. Additionally, our algorithm can detect relevant exam-
ples that are in between normative and comparative, which would
occur as internal nodes in the pruned tree. These internal nodes in-
terpolate between the normative and comparative examples, ideally
making the differences between instances appear less abrupt. From
the example instances, we built various visual explanations.

3.3 Spatial Layout
Layout (also known as position) is a key factor in designing visual-
ization[9] that affects people’s perception and cognition[40]. We
used three visualization layouts to illustrate the relationship be-
tween the example instances: grid, tree, and graph. Each of these
three spatial layouts show all of the example instances from the
pruned tree, varying in how instances are arranged spatially, and
which connections are visible. The input instance and the instances
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from the same class are differentiated using colors and font, and all 
the other visual elements are the same.
Grid A grid layout is commonly used in the field o f com-
puter vision to illustrate the results or mechanisms of a neural 
network [103, 125]. Our layout arranges instances into rows and 
columns, and each column corresponds to one class (see Figure 1c). 
The input instance is always the upper and left-most instance in 
the grid. Instances within a column are sorted by their weighted 
geodesic distance to the input node so that more similar instances 
to the input node are above less similar ones. The interpretation 
is that it shows the similarities to the input instance within the 
leftmost column and the differences across columns.
Tree A tree layout is most similar to the pruned shortest path 
tree. It arranges the instances using a layered graph layout of the 
pruned shortest path tree (see Figure 1d). The input instance is 
always the only instance at the top level. Instances with different 
classes are leaf nodes, below the instances with the same class as 
the predicted classification of the input instance. The interpretation 
is that a user can start at the top of the tree with the input instance 
and follow the paths to leaf nodes with different classes.
Graph A graph layout increases the amount of information in 
the explanation by further considering additional connections be-
tween instances in the 𝑘-nearest neighbor graph. It uses “neato”[24], 
a force-directed layout algorithm to arrange instances based on 
their connections (see Figure 1e). The weight of the edge, i.e.,the dis-
tance between instances in the model representation, is ignored by 
the layout algorithm to allow sufficient space to draw the instances. 
The interpretation is that the input instance tends to be placed in 
the center, and the instances in a different class tend to be located 
at the periphery. If a nearby instance has a similar appearance but 
different class, it may indicate an incorrect classification.

3.4 Instance Representation
Another key factor in designing a visualization is visual mark [9]. 
While this factor usually refers to representing a data point, we 
extended this concept to representing an instance and called it 
instance representation. We explored two ways to represent an in-
stance: one shows a feature vector, and the other presents an image. 
Feature vectors are commonly used as inputs for an algorithm or a 
machine learning classifier, whereas images are more natural for 
people to understand. Here we illustrate the two representations 
using the UCI leaf dataset[105], which was also the dataset used in 
our experiment (see Section 3.5 below).
Rose We illustrated a feature vector using an ordered rose 
chart (denoted as “rose-based explanation,” see Figure 1b and Ap-
pendix B). We normalized features using the QuantileTransformer 
(scikit-learn[98]) with 10 quantiles and ordered features so that 
more positively correlated features were more likely to be adjacent. 
We brainstormed a set of representations (see supplementary ma-
terials) and chose rose charts after two qualitative studies. In the 
first study, we presented all the candidate representations to eight 
people in a workshop, including the four authors. All people chose 
either radar or rose charts; three authors picked rose charts, and the 
other author picked radar charts. In the second study, we presented 
explanations of radar and rose charts to eleven other people with 
various backgrounds in visualization, system development, and user

experience; the majority selected rose charts because they are intu-
itive for comparing all the features together (e.g.,shape), supporting
reading individual features, and were aesthetically pleasing.
We were aware that bar[6, 38, 57, 108] and radar[127] charts were
commonly used to show features, but little evidence supports that
they are more effective than rose charts[56]. Radar charts are mis-
leading because they show the differences between two features as
area, but these differences were not directly used by the classifier.
Image We also used an image to represent an instance (de-
noted as “image-based explanation,” see Figure 1a). Representing
instances using images or figures is common in the field of computer
vision[103]; it is also intuitive for imagery data.

3.5 Dataset
We based our experiment on the UCI leaf dataset[105]; this dataset
includes both expert engineered feature vectors and images so
that we were able to vary instance representations in a controlled
manner. Participants should be able to understand the concept of
classifying leaves and compare different leaf instances, but most
people are not able to accomplish the classification task unassisted,
because naming and distinguishing species requires an uncommon
level of expertise in botany. This situation created a scenario that
allows human-machine collaboration.

We made two necessary modifications to the original dataset:
(1) we replaced the scientific (Latin) names of leaves with their
common names (e.g., Primula vulgaris was replaced with Primrose);
and (2) we selected the 10 most frequently occurring leaf classes
that have similar numbers of instances. As a result, we had 125
instances and 14 features (e.g.,elongation and uniformity).

We also modified the colors of leaf images in the original dataset
to ensure compatibility between the two representations. We con-
verted the color images to grayscale for three reasons: (1) grayscale
images are more similar to rose charts (Figures 1a c.f. b) to avoid
issues like differences in memorability[5], (2) colors are misleading
because all the texture features (e.g., elongation) in the dataset were
based on intensity, and (3) the color images are distracting because
they have a pink background.We added a neutral background for all
the leaf images so that they looked more similar to the rose charts.
We also cropped and re-scaled the images so that the foreground
was similar in size across images and compatible to the rose charts.

3.6 Classifier
Our classifier was a linear support vector machine (LSVM) with
standard normalization, cross-validation, and hyper-parameter grid
search (see Appendix B). Its distance function output was the input
to our algorithm to find example instances and their connections.
The accuracy of the classifier was 71%, which is of medium reliabil-
ity/utility[17, 46, 60, 84, 89, 126] to foster trust in machine learning.
The same LSVM classifier generated all the recommendations and
explanations, and only static image files were included in the exper-
iment. The classifier, classification process, and explanations were
all implemented using Python 3 and scikit-learn[98].

4 STUDY DESIGN
Here we described the details in designing and conducting our
experiment. We provide an overview of the experiment in Figure 3.
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Figure 3: Experimental design and procedure—Each participant finished all eight experimental conditions, including 4=3+1 spatial
layout conditions (grid, tree, graph, and none) and 2 representations (images and roses). Every participant finished the two representations
in two sub-experiments between 2 and 5 days apart.

4.1 Task Construction
We aim to establish human-machine collaboration in our experi-
ment; that is, a human making a decision with the assistance of a
machine learning algorithm. In our experiment, participants were
asked to imagine themselves as assistant botanists. As assistant
botanists, their task was to classify leaves aided by classifiers, i.e.,
identifying which class a leaf belongs to, with or without visual
explanations. We told participants that they would work with dif-
ferent “classifiers” and hinted that each “classifier” corresponds to a
different explanation condition (e.g.,a tree layout using rose charts).
This was to avoid confusion and encourage participants to treat
different explanation conditions independently.

Participants worked with one “classifier” for a series of trials. In
each trial, they saw a leaf instance and a classification recommenda-
tion (e.g.,“The classifier think this represents Hazel.”) Participants
decided whether they were going to follow this recommendation.
They were encouraged to make good decisions in order to develop
appropriate trust: follow the classifier when it is correct, and do not
follow the classifier when it is incorrect. After participants made
their decision for this recommendation, they were given feedback
on whether the classifier was correct or not, a reminder of their
decision, and feedback for if their decision was good (e.g.,“The clas-
sifier was correct for this recommendation. You didn’t follow the
classifier. This is not a good decision.”). Giving feedback calibrates
trust such that we were able to measure appropriate trust[87], and
it also compensates for a poor performing aid [104] because end
users may not have expertise to accomplish the task in an early
stage; last, showing feedback allows us to observe change of trust
over time, aligning with our goal of fostering trust with end users.

4.2 Measuring Appropriate Trust
At the beginning of the experiment, participants were presented
with the trust definition (the same definition in Section 2). They
were also told that all the classifiers make a correct recommendation
about 70-90% of the time. These methods ensured that participants
had the same expectation about the classifiers’ reliability[62].

We referred to two ways in the literature to measure trust: (1) di-
rectly reporting the level of trust using subjective rating scales
(e.g.,[14, 29, 31, 60, 126]); and (2) measuring through a multi-item
questionnaire (e.g.,[47, 78, 82, 85, 87, 100, 104]). Guided by the trust
definition, we combined the two approaches. We measured partici-
pants’ trust as the willingness to follow the recommendation and
their self-confidence in the decision via four items in each trial:
1 “Will you follow this recommendation?” It measures partici-

pants’ willingness to act on a recommendation and was used

with two options: Follow or Don’t Follow.
2 “How do you feel about your decision above?” It measures

participants’ self-confidence and was rated on a 7-point Likert
scale from Not at all comfortable (1) to Very comfortable (7).
Comfortable replaced confident for two reasons: (1) the partic-
ipants in pilot study were confused with whether confidence
referred to the classifier or their decision; and (2) confident and
comfortable are equivalent in conceptual meaning[114], while
comfortable was used more to describe a decision[49, 114].

3 “Was the explanation helpful in making the decision above?”
This item was rated on a 7-point Likert scale from Not at all
helpful (1) to Very helpful (7). This item was omitted in the
control conditions when no explanation was available.

4 A linear “Trust Meter” ranged from completely distrust (−100)
to completely trust (+100), inspired by[51]. Participants were
reminded and encouraged to adjust the trust meter at any time if
their trust in the classifier changes. The trust meter was always
available to participants and reset for a different classifier, while
the above three questions were removed after the feedback.

The first item captures more of cognitive trust, the willingness
to rely on a system’s competence, which arises from accumulated
knowledge[48]. The second question captures affective trust, defined
as one’s feeling of security and comfort relying on the trustee (the
classifier)[54]. The third item is a usability measure. The last item
is the trust meter that captures changes in trust.

4.3 Experimental Design
The experiment was a complete within-subjects design. We manip-
ulated spatial layout (grid, tree, and graph) and instance represen-
tation (images or rose charts); we also used one control condition
for each representation (denoted as “none”) to establish the base-
line of trust and performance. As a result, we had (3+1) × 2 =

8 experimental conditions. We did not manipulate other factors
such as affect[84, 89] and workload[16], but we controlled reliabil-
ity[65, 86, 117, 126], expectation[62], and risk[83].

Each participant finished all eight experimental conditions, di-
vided into two sub-experiments, in each of which only showed
one representation (images or rose charts) but all the three spa-
tial layouts (grid, tree, graph) as well as the corresponding control
condition. Each participant completed the two sub-experiments be-
tween 2 and 5 days apart due to our strong concerns about learning,
practice[27], and fatigue effects[102]. The order of sub-experiments
was balanced across gender, and the order of conditions repeated
a 4 × 4 Latin square; the sub-experiments and conditions were
otherwise randomly assigned.
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In each condition, participants finished a sequence of trials. All 
the sequences had the identical order of correct/incorrect recom-
mendations. The fixed sequence controlled learning effects, aligned 
priming effects, and allowed us to compare different conditions. 
The specific sequence we used was generated by a Monte Carlo 
method, permuting until no more than two incorrect recommenda-
tions occur in any span of five. We also ensured that the first trial 
was always correct to protect trust in an early stage[62, 75]. The 
sequence we used consisted of 4 practice and 27 main trials, contain-
ing 3 and 20 correct recommendations, respectively. These resulted 
in an “experienced accuracy” of about 75% (3/4=75%, 20/27=74%), 
closely matching the classifier’s accuracy of 71%. The number of 
trials was decided in order to (1) compare with other experiments 
studied trust (e.g., 10[17, 22, 60, 84, 85]), 24/48[76], 26[17], 50[104]),
(2) have enough trials to develop trust but prevent participants 
from memorizing the order (serial position effects[44]), (3) balance 
the number of trials across different classes. The instances in the 
sequence were randomized, and the instances used for training and 
practice were excluded in the main trials.

We used a think-aloud protocol with three participants for a 
pilot study. Based on the observations from the pilot study, we 
fine-tuned the questions and instructions. We excluded these three 
participants from the main experiment.

4.4 Procedure
After participants provided informed consent, they saw an overview 
of the experiment. They then filled in a questionnaire for their back-
ground information and propensity to trust[85], followed by their 
familiarity with plants’ leaves on a 7-point Likert scale from Not 
at all familiar to Very familiar. They then took part in a training 
session, read the scenario and goals, saw an example instance from 
each leaf class, and practiced using the trust meter. Participants then 
proceeded to the main session where they worked with four “classi-
fiers” (grid, tree, graph, and none). For each “classifier,” they first saw 
an introduction of what they could expect to see and the instructions 
of how to read the visual explanation, followed by 4 practice trials. 
The trust meter was then reset, and participants finished 27 main tri-
als. All participants took a 1-minute mandatory break between two 
“classifiers;” longer breaks were allowed. After completing all four 
“classifiers,” they filled in a post-experiment questionnaire. Each 
sub-experiment took approximately 1.5 hours, and two together 
took about 3 hours. The consent and pre-experiment questionnaire 
were omitted in the second sub-experiment.

All experiments were conducted in-person and in-laboratory on
Windows desktopswith amouse and a keyboard, using themonitors
of the same model (24 inch, 1920 × 1080, 60Hz) and proctored by at

least one of the authors following the same study protocol.

4.5 Participants
We planned to include both non-expert and expert users in our ex-
periment. The non-expert users had little background knowledge in
machine learning, but they might have experienced machine learn-
ing techniques in their personal lives and work environments. The
expert users had sufficient knowledge of how a machine learning
algorithm operates or experienced both effectiveness and ineffec-
tiveness of a machine learning classifier. They held different mental
models about machine learning[45].

We recruited 33 participants (19 female, 14 male) from our insti-
tution (PNNL) according to a pre-planned end date and to roughly
balance gender, backgrounds, as well as the two orders of sub-
experiments. All the participants were staff members, and they
were typically between 25 and 60 years old. Among them, 16 partic-
ipants did data analysis as part of their job or have machine learning
backgrounds, and we identified them as “expert users.” The rest 17
participants came from other disciplines or administrative positions,
and we identified them as “non-expert users.” All the participants
were compensated at their normal salary rate and the experiment
counted towards their working hours to help ensure participants
were engaged in the experiment. The study was approved by the
PNNL Institutional Review Board (IRB #2018-15).

In total, we collected 8,184 trials = (3+1) layout conditions (grid,
tree, graph, and none) × 2 representations (images and roses) × 31
trials × 33 participants. We excluded the practice trials and used
7,128 trials for analyses.

5 ANALYSES AND RESULTS
We framed our research questions as follows:
RQ1 Do our visual explanations enable users to develop more

appropriate trust?
RQ2 How did the three spatial layouts (grid, tree, and graph) affect

users’ trust differently?
RQ3 How did the two instance representations (images and roses)

affect users’ trust differently?
RQ4 How did other covariates (e.g.,expert users vs. non-expert

users, prior knowledge, and propensity to trust) affect peo-
ple’s trust?

RQ5 How did errors and explanations affect trust direction?
The first research question was a replication to confirm that our

explanations increase users’ appropriate trust. We aimed to under-
stand the effectis of different spatial layouts and representations
(RQs 2 and 3) and to explore the effects of individual differences
(RQ4). We were also interested in how trust changes over time and
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Figure 4: Overview of the results—the raw results for mean values and 95% bootstrap CIs. The center lines indicate the classifier’s
performance and neutral cases for comparison. (right side = “better,” = mean, = 95% CI)
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Figure 5: RQ1 Do our visual explanations enable users to develop more appropriate trust?—The results suggest that all the visual
explanations (a) increase appropriate trust, (b) decrease overtrust, and (d) lead to more confidence. Image-based explanations also have
moderate effects on (c) correcting undertrust. (right side = “better,” = mean, = 95% CI)

the effects of giving feedback on trust (RQ5). We framed all the
research questions and collected all the data before any analysis.

5.1 Measures
We collected three categories of data in our experiment:
Trust had four measures: (1) appropriate trust (good decisions), (2)
overtrust (following an incorrect recommendation), (3) undertrust
(not following a correct recommendation), and (4) self-confidence.
These measures align with the trust definition in Section 2 and
Figure 2, quantifying the willingness to follow a recommendation
and users’ self-confidence in their decisions.We used the percentage
of each type of decision and the average of the confidence score
over the 27 trials for each participant × condition pair.
Usability had five measures: (1) the helpfulness of the given ex-
planation in a trial, (2) completion time, and (3-5) three measures
from the post-questionnaire (subjective preference, overall com-
fortableness, and overall understanding of each spatial layout). We
focused on helpfulness because it precisely measured the usability
of a given explanation for each trial.
Trust meter was sampled twice in a trial: (1) before participants
saw the feedback, and (2) after participants saw the feedback but
before the next trial. The difference between any two adjacent
samples indicates the direction of trust (increase or decrease).

In sum, appropriate trust, overtrust, and undertrust are percent-
ages in the range of [0, 1]; self-confidence and helpfulness are Likert
scale ratings in the range of [1, 7]; trust direction is a difference in
the range of [-100, 100], which we later normalized to [-1, 1].

5.2 Approach
In response to the limitations of null hypothesis significance test-
ing (NHST), we used the interval estimate method recommended
by Cumming[13] and Dragicevic[20]. We used 95% bias-corrected
and accelerated bootstrap confidence intervals (𝑅 = 5000) and mea-

sured effect size using Cohen’s 𝑑 and 𝑅2 [12]. We aggregated the
results for each participant, bootstrapped individual participant’s
data, and calculated confidence intervals. We used mixed effects
models to investigate covariates. To prevent from multiple compar-
isons problems, we avoided making a conclusion from an individual
comparison and focused on summarizing all confidence intervals;
using bootstrapping also controls false discovery, especially when
the resampling is exhaustive[120]. We based our inference on the
interpretation of confidence intervals[12]: the range of a confidence
interval and its relationship to 0 indicate the size of an effect.

We included all 33 participants in our analyses becausewe did not
find any explicit outlier or indication of not following instructions.
We provided an overview of the results in Figure 4. The detailed
results and their interpretation are as follows.

5.3 Results
We report the mean values and their 95% bootstrap confidence
intervals (CIs). We also report the values of Cohen’s 𝑑 and their
95% bootstrap confidence intervals in supplementary materials.

RQ1 Do our visual explanations increase appropriate trust?
Method We used the four trust measures to quantify the effects:
(1) appropriate trust, (2) overtrust, (3) undertrust, and (4) self-
confidence. We subtracted the control (none) conditions from the
others—grid, tree, graph, and an aggregation of the three spatial
layouts, denoted as “g/t/g” (grid/tree/graph).
Results We present the results in Figure 5. The results support
that all the visual explanations largely increase appropriate trust
(e.g., Cohen’s 𝑑 : 0.84 [0.58, 1.11]), reduce overtrust (e.g., Cohen’s
𝑑 : -1.01 [-1.66, -0.42]), and help users gain more confidence in their
decisions (e.g., Cohen’s 𝑑 : 0.84 [0.54, 1.11]). The results also suggest
that image-based explanations help correct undertrust (e.g., Co-
hen’s𝑑 : -0.41 [-0.58, -0.22]), but the effect of rose-based explanations
on undertrust is inconclusive.
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Figure 6: RQ2 How did the three spatial layouts affect users’ trust?—The results support that for image-based explanations, the three
spatial layouts are similar (top a-c), while grid explanations may be more helpful (e). For rose-based explanations, the results suggest that
tree explanations leads to more appropriate trust than grid explanations (bottom a-c). (right side = “better,” = mean, = 95% CI)
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Figure 7: RQ3 How did the two representations affect users’ trust?—The results strongly suggest that image-based explanations
result in more appropriate trust than rose-based explanations (a-d), and participants also think image-based explanations are more helpful (e).
(right side = “better,” = mean, = 95% CI)

RQ2 How did the three spatial layouts affect users’ trust?
Method We used both the trust and usability measures for com-
paring the three spatial layouts of explanations: (1) appropriate
trust, (2) overtrust, (3) undertrust, (4) self-confidence, and (5) help-
fulness. We subtracted the three spatial layouts from each other,
and calculated mean difference and their 95% bootstrap CIs.
Results We present the results in Figure 6. For the image-based
explanations, all the three spatial layouts lead to a similar level of
users’ trust; appropriate trust, overtrust, and undertrust are very
similar and display few differences among the three spatial lay-
outs (e.g.,Cohen’s 𝑑 : 0.092 [-0.28, 0.45]). However, the results also
support that grid explanations are slightly more helpful than tree
explanations (e.g.,Cohen’s 𝑑 : -0.34 [-0.68, 0.065]), which are more
helpful than graph explanations (e.g.,Cohen’s 𝑑 : -0.62 [-0.96, -0.22]).
For the rose-based explanations, the results support that tree and
graph explanations lead to more appropriate trust than grid expla-
nations, and participants gain a similar level of confidence with all
the three spatial layouts (e.g.,Cohen’s 𝑑 : -0.075 [-0.42, 0.28]).
RQ3 How did the two representations affect users’ trust?
Method Similar to the analyses above, we used both the trust mea-
sures and helpfulness for comparing images and rose charts repre-
sentations : (1) appropriate trust, (2) overtrust, (3) undertrust, (4)
self-confidence, and (5) helpfulness. We subtracted the rose-based
explanations from the image-based explanations, and calculated
mean differences and their 95% bootstrap CIs.
Results We present the results in Figure 7. The results strongly
suggest that image-based explanations result in more appropriate
trust (e.g.,Cohen’s 𝑑 : 1.90 [1.60, 2.20]), reduce overtrust (e.g., Co-
hen’s𝑑 : -1.63 [-1.88, -1.40]), correct undertrust (e.g., Cohen’s𝑑 : -1.13
[-1.33, -0.90]), and help people gain more confidence than rose-
based explanations (e.g.,Cohen’s 𝑑 : 1.43 [1.23, 1.64]). The results
also support that image-based explanations are more helpful than
rose-based explanations (e.g.,Cohen’s 𝑑 : 0.64 [0.40, 0.84]).

When taking RQs1-3 together, the effects of “images vs. roses”
and “explanation vs. none” are stronger than the differences in the
three spatial layouts. To simplify further analyses, we omit the
differences in the three spatial layouts and consider them all as
having a visual explanation, denoted as “g/t/g” (grid/tree/graph).

RQ4 How did covariates affect users’ trust?
Method We investigated three covariates of interest: (1) non-
expert users vs. expert users, encoded as 1 vs. 0; (2) participants’
familiarity with the task (leaf familiarity), varying from 1 to 7 and
rescaled to 0 to 1; and (3) propensity to trust, varying from 1 to
7 and rescaled to 0 to 1. We also compared these covariates with
the two experimental variables: (4) images vs. roses, recoded as
1 vs. 0, and (5) explanation vs. none, recoded as 1 vs. 0. We used
mixed-effects regression models, where these five variables were
fixed effects and participants were random intercepts. We checked
the collinearity between all these variables (covariates) and found
low collinearity for all pairs (1 < variance inflation factor (VIF) < 2).
We built a model for each trust measure and fit them using the
observations from each participant (33 × 8 = 264 observations).
Results We present the coefficients of the models, their 95% boot-
strap CIs, and model metrics in Figure 8. These models explain
about 50% to 70% variance in the data. The effects of all the three
observed covariates are inconclusive; the only exception is that non-
expert users seem to have more confidence in their decisions; they
may also have slightly more appropriate trust and overtrust. The
strongest effects come from the two experimental variables: image-
based explanations lead to more appropriate trust and a higher
level of confidence than rose-based explanations; having a visual
explanation also leads to more appropriate trust and confidence.
RQ5 Howdid errors and explanations affect trust direction?
Method We sampled the direction of trust twice in a trial, split
by if participants saw the feedback, i.e., knowing if the classifier
was correct and if they made a good decision. One was (1) the
direction before seeing the feedback, defined as the change of the
trust meter between the starting of a trial and right before the
feedback. The other was (2) the direction after seeing the feedback,
defined as the change of the trust meter between first seeing the
feedback and the end of the trial. We used the signs of changes
to normalize the changes and prevented extreme scores; all the
negative scores (decrements) were mapped to -1, and all the positive
scores (increments) were mapped to 1. We averaged the changes for
each participant and subtracted within participants. We calculated
the mean values, the mean differences, and their 95% bootstrap CIs.
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Figure 8: RQ4 How did covariates affect users’ trust?—We report the model coefficients and their 95% CIs. The effects of the three
covariates seem to be inconclusive; the exception is that non-expert users seem to have more confidence. The strongest effects come from if
participants had an explanation and which representation they used. (right side = “better,” = mean, = 95% CI)
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Figure 9: RQ5 How did errors and explanations affect trust direction?—Participants responded to the feedback strongly. They
appeared to decrease the trust meter for an incorrect recommendation when an image-based explanation is available. They did not adjust the
trust meter when using rose charts. (right side = “better,” = mean, = 95% CI)

Results We report the results in Figure 9. Before seeing the feed-
back, participants increase the trust meter for a correct recommen-
dation and decrease the trust meter for an incorrect one; having
an explanation shows small positive effects on trust direction (e.g.,
Cohen’s 𝑑 : 0.49 [0.22, 0.72]). The effects of feedback are very strong
(e.g.,Cohen’s 𝑑 : 0.73 [0.36, 1.02]), especially for rose-based expla-
nations (e.g.,Cohen’s 𝑑 : 0.95 [0.64, 1.26]). Yet the effect of having
an explanation on trust direction is very small (e.g.,Cohen’s 𝑑 : 0.34
[-0.11, 0.65]). We think that participants respond to the feedback
strongly regardless of spatial layouts and representations; but our
explanations may help them recognize a correct recommendation
and identify an incorrect one before they see the feedback.

5.4 Summary of Results
For each research question, we summarized our findings as follows.
1 Every explanation improves users’ appropriate trust in the clas-

sifier, and the human-machine collboration [71] can achieve
nearly perfect performance (all good decisions) when an effec-
tive explanation is available.

2 Image-based explanations outperform rose-based explanations
because they increase appropriate trust, decrease overtrust and
undertrust, improve self-confidence, and show more usability.

3 Grid explanations generally outperform tree explanations, which
outperform graph explanations; tree explanations moderately
outperform grid explanations when using rose charts.

4 Individual differences did not seem to show strong effects in
this experiment.

5 Showing feedback has a very strong effect on trust direction,
especially when an explanation is available.

6 DISCUSSION
6.1 Instance Representation: Images and Roses
We found that image-based explanations were most effective for im-
proving appropriate trust and helpfulness. The primary reason may
be that images are easy to understand and more features beyond the
expert engineered features from the dataset are available in image
representations. These image-based explanations correct overtrust.
People can use them to detect a system’s error and respond to the
error accordingly. Image-based explanations also mitigate under-
trust; that is, they have persuasive power[96] to convince people to
believe that a recommendation is correct. Last, participants spent
less time on the image-based explanations. It may indicate that
image-based explanations are easier to understand (Figure 10a).

In our study, rose charts accurately reflect the features used by
the classifier, and rose-based explanations closely match the clas-
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Figure 10: The understanding scores of the three spatial layouts,
completion time and subjective preference of all the eight condi-
tions. (right side = “better,” = mean, = 95% CI)

sification process. While rose-based explanations generally help
participants improve their trust in a classifier, participants may
have difficulty understanding them. They may not believe a clas-
sification is correct even given the explanation; hence rose-based
explanations did not improve undertrust. Part of the reason is that
we use raw features and hide the meaning of each feature to avoid
overwhelming participants. This design decision may make it more
difficult to reason about how individual features contributed to a
particular classification. In the real world, sometimes only feature
vectors are available, and we have to use feature representations.
We can improve the understandability of feature representations by
combining existing feature-based explanations with our instance-
based explanations, adding interaction, or using exploration[23].
This difficulty may also explain why expert users had less con-
fidence in their decisions, and why they want more information
about the recommendation when making a decision.

6.2 Spatial Layout: Grid, Tree, and Graph
All three layouts of explanations improve users’ trust, though grid
explanations with images were the most helpful. Participants have
more confidence in their decisions, feel grid explanations are more
helpful, and understand grid explanations better (see Figures 10a-b).
Grid explanations are also preferred by the majority of participants
(see Figure 10c). This observationmay be explained by the simplicity
and clarity of a grid layout:

“ It is simple and allowed me to easily see ground-truth from
each class.”

While most participants prefer grid explanations when using rose
charts, they develop more appropriate trust with tree explanations.
Tree explanations disclose more information (e.g., links) over grid
explanations and compensate for difficulties of understanding rose
charts. While graph explanations provide the most amount of infor-
mation and empower the most accurate comparisons, few partici-
pants preferred graph explanations despite similar levels of trust.
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Participants without visualization background or training find it 
difficult to understand a graph explanation:

“ It required too much interpretation compared with the grid
and tree approach.”

In a graph explanation, the placement of the source instance is arbi-
trary due to the layout algorithm, sometimes causing participants
to spend extra time searching for it:

“ I had to work hard to find the recommended version in the
diagram, and then I had to jump all over the map to make
pairwise comparisons or find other examples to compare contrast
against.”

A graph explanation may also cause clutter and occlusion, further
reducing visualization legibility.

These observations suggest that spatial layout affects people’s
trust and interacts with instance representation. While different in-
stance representations may yield different levels of task difficulties,
a good spatial layout could helpmitigate some of the task difficulties.
We recommend a grid layout if the representation is easy to
understand and a tree layout if the representation is difficult
to read or usability of the representation is unknown.

6.3 Understanding and Appropriate Trust
We observed that understanding and appropriate trust are relevant
but different. Our visual explanations did not reveal the compli-
cated underlying algorithm. It would have been impossible for our
participants to understand the underlying classification process.
However, they were able to make good decisions almost all the
time with the classifier’s assistance and proper explanations, which
explain the outputs from the classifier and the relationship between
example instances. These appear to be sufficient for participants to
decide whether to follow a classification recommendation.

We observed that participants’ understanding of visual explana-
tion was correlated with their trust. When using grid explanations
with images, they developed the highest level of appropriate trust
and felt they understood the explanations the best; participants
performed worse with all the rose-based explanations and thought
they understood rose charts less than images. However, while par-
ticipants found tree and graph explanations harder to understand
than grid explanations, they developed similar levels of trust. Fur-
thermore, when using rose charts, participants developed the high-
est level of appropriate trust with tree explanations. Participants
showed overtrust and undertrust when using grid explanations
with rose charts even though they rated grid explanations as the
most easily understood.

We speculate that the understandability of an explanation is
crucial to users’ trust, in terms of both spatial layout and instance
representation. Instance representation appears to be more impor-
tant in creating better trust and understanding; however, spatial
layout determines the amount and form of information provided
which certainly contributes to users’ trust. A previous study using
a similar grid layout with bar charts showed the visual explanations
with aggregation improved both users’ performance and trust while
lack of aggregation reduced users’ performance[57]. These results
align with our observations that representation impacts users’ trust,
but spatial layout also contributes.

Last,we recommend that future research considers appro-
priate trust, instead of simplymeasuring an increase in users’
trust. If we were looking only for an increment in users’ trust, we
would have overlooked the increased overtrust and accounted for
it as a positive result. Measuring the appropriate trust avoids the
issue that trust might be misplaced[109].

6.4 Limitations and Future Work
Limitations of our work are that we used example instances at
decision boundaries, a pre-defined distance metric, and a linear
kernel with Minkowski distance. This selection of examples may
bring in biases in our results about the effects of spatial layouts and
instance representations. Our findings may not generalize to every
example-based explanation technique.

Future work can compare different methods for instance selec-
tion, different representations, and other layouts, and also include
the classifier’s confidence in each instance and recommendation.
For example, the layouts in our study could be varied using other
algorithms to calculate the influential instances. An alternative
approach could be to hide feedback for domain experts. Also, to
improve the understandability of representations, interaction tech-
niques[88] like brushing and coordinated multiple views[56] can
be used to help users gain insights about features and further con-
fidence scores from the classifier. If a dataset has many features,
dimension reduction or feature aggregation[57] could be done prior
to generating feature representations, i.e.,rose charts; other feature
representations are also possible, as shown in our supplementary
materials. These extensions require additional experiments, and
they are beyond the scope of our study. Broader findings would
further enable designers to select visual explanations to make auto-
mated systems more interpretable, trustable, and responsible[3].

7 CONCLUSION
In this paper, we investigated two visualization design factors—
spatial layout and instance representation—for example-based ex-
planations and showed their effects on end users’ appropriate trust.
We found that every visual explanation in our experiment greatly in-
creased users’ appropriate trust in machine learning and improved
appropriate use of the recommendations from the classifier. How-
ever, different spatial layouts and instance representations showed
very strong effects on users’ trust; users’ backgrounds had a weak
effect on the levels of their trust and confidence. We conclude that
both the understandability and layout of the explanation contribute
to users’ trust; feedback of users’ performance affects their inten-
tions and direction of trust. Our concise explanations have the
potential to improve end users’ trust and enhance the use of auto-
mated systems without requiring a complete understanding of the
system or algorithm.
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